
1

UNIT-4

LOGIC BASED TESTING:

This unit gives an indepth overview of logic based testing and its implementation.

At the end of this unit, the student will be able to:

 Understand the concept of Logic basedtesting.

 Learn about Decision Tables and their application

 Understand the use of decision tables in test-case design and know theirlimitations.

 Understand and interpret KV Charts and know theirlimitations.

 Learn how to transform specifications into sentences and map them into KVcharts.

 Understand the importance of dont-careconditions.

OVERVIEW OF LOGIC BASED TESTING :

 INTRODUCTION:

o The functional requirements of many programs can be specified by decision
tables, which provide a useful basis for program and test design.

o Consistency and completeness can be analyzed by using boolean algebra,
which can also be used as a basis for test design. Boolean algebra is
trivialized by usingKarnaugh-Veitchcharts.

o "Logic" is one of the most often used words in programmers' vocabularies but
one of their least usedtechniques.

o Boolean algebra is to logic as arithmetic is to mathematics. Without it, the
tester or programmer is cut off from many test and design techniques and tools
that incorporate thosetechniques.

o Logic has been, for several decades, the primary tool of hardware logic
designers.

o Many test methods developed for hardware logic can be adapted to software
logic testing. Because hardware testing automation is 10 to 15 years ahead of
software testing automation, hardware testing methods and its associated
theory is a fertile ground for software testingmethods.

o As programming and test techniques have improved, the bugs have shifted
closer to the process front end, to requirements and their specifications. These
bugs range from 8% to 30% of the total and because they're first-in and last-
out, they're the costliest ofall.

o The trouble with specifications is that they're hard toexpress.
o Boolean algebra (also known as the sentential calculus) is the most basic of all

logicsystems.
o Higher-order logic systems are needed and used for formalspecifications.
o Much of logical analysis can be and is embedded in tools. But these tools

incorporate methods to simplify, transform, and check specifications, and the
methods are to a large extent based on booleanalgebra.

o KNOWLEDGE BASEDSYSTEM:
 The knowledge-based system (also expert system, or "artificial

intelligence" system) has become the programming construct of
choice for many applications that were once considered very
difficult.

 Knowledge-based systems incorporate knowledge from a
knowledge domain such as medicine, law, or civil engineering into
a database. The data can then be queried and interacted with to
provide solutions to problems in thatdomain.

 One implementation of knowledge-based systems is to incorporate
the expert's knowledge into a set of rules. The user can then
provide data and ask questions based on thatdata.

2

 The user's data is processed through the rule base to yield
conclusions (tentative or definite) and requests for more data. The
processing is done by a program called the inferenceengine.

 Understanding knowledge-based systems and their validation
problems requires an understanding of formallogic.

o Decision tables are extensively used in business data processing; Decision-
table preprocessors as extensions to COBOL are in common use; boolean
algebra is embedded in the implementation of theseprocessors.

o Although programmed tools are nice to have, most of the benefits of boolean
algebra can be reaped by wholly manual means if you have the right
conceptual tool: the Karnaugh-Veitchdiagram is that conceptualtool.

DECISION TABLES:

 Figure 6.1 is a limited - entry decision table. It consists of four areas called the condition

stub, the condition entry, the action stub, and the actionentry.

 Each column of the table is a rule that specifies the conditions under which the actions
named in the action stub will takeplace.

 The condition stub is a list of names ofconditions.

Figure 6.1 : Examples of Decision Table.

 A more general decision table can be asbelow:

3

Figure 6.2 : Another Examples of Decision Table.

 A rule specifies whether a condition should or should not be met for the rule to be

satisfied. "YES" means that the condition must be met, "NO" means that the condition
must not be met, and "I" means that the condition plays no part in the rule, or it is
immaterial to thatrule.

 The action stub names the actions the routine will take or initiate if the rule is satisfied. If
the action entry is "YES", the action will take place; if "NO", the action will not takeplace.

 The table in Figure 6.1 can be translated as follows:

Action 1 will take place if conditions 1 and 2 are met and if conditions 3 and 4 are not met
(rule 1) or if conditions 1, 3, and 4 are met (rule2).

 "Condition" is another word forpredicate.

 Decision-table uses "condition" and "satisfied" or "met". Let us use "predicate" and TRUE /
FALSE.

 Now the above translationsbecome:

1. Action 1 will be taken if predicates 1 and 2 are true and if predicates 3 and 4
are false (rule 1), or if predicates 1, 3, and 4 are true (rule2).

2. Action 2 will be taken if the predicates are all false, (rule3).
3. Action 3 will take place if predicate 1 is false and predicate 4 is true (rule4).

 In addition to the stated rules, we also need a Default Rule that specifies the default

action to be taken when all other rules fail. The default rules for Table in Figure 6.1 is
shown in Figure6.3

4

Figure 6.3 : The default rules of Table in Figure 6.1

 DECISION-TABLEPROCESSORS:

o Decision tables can be automatically translated into code and, as such, are a
higher-order language

o If the rule is satisfied, the corresponding action takesplace
o Otherwise, rule 2 is tried. This process continues until either a satisfied rule

results in an action or no rule is satisfied and the default action istaken
o Decision tables have become a useful tool in the programmers kit, in business

dataprocessing.
DECISION-TABLES AS BASIS FOR TEST CASE DESIGN:

0. The specification is given as a decision table or can be easily converted into
one.

1. The order in which the predicates are evaluated does not affect interpretation
of the rules or the resulting action - i.e., an arbitrary permutation of the
predicate order will not, or should not, affect which action takesplace.

2. The order in which the rules are evaluated does not affect the resulting action -
i.e., an arbitrary permutation of rules will not, or should not, affect which action
takesplace.

3. Once a rule is satisfied and an action selected, no other rule need be
examined.

4. If several actions can result from satisfying a rule, the order in which the
actions are executed doesn'tmatter

DECISION-TABLES AND STRUCTURE:

o Decision tables can also be used to examine a program'sstructure.

o Figure 6.4 shows a program segment that consists of a decisiontree.

o These decisions, in various combinations, can lead to actions 1, 2, or 3.

5

Figure 6.4 : A Sample Program

o If the decision appears on a path, put in a YES or NO as appropriate. If the

decision does not appear on the path, put in an I, Rule 1 does not contain
decision C, therefore its entries are: YES, YES, I,YES.

o The corresponding decision table is shown in Table6.1

 RULE 1 RULE 2 RULE 3 RULE 4 RULE 5 RULE 6

CONDITION A
CONDITION B
CONDITION C
CONDITION D

YES
YES

I
YES

YES

NO
I
I

YES
YES

I
NO

NO
I

YES
I

NO
I

NO
YES

NO
I

NO
NO

ACTION 1
ACTION 2
ACTION 3

YES
NO
NO

YES
NO
NO

NO
YES
NO

NO
YES
NO

NO
YES
NO

NO
NO
YES

o Table 6.1 : Decision Table corresponding toFigure

6.4
o As an example, expanding the immaterial cases results asbelow:

6

o Similalrly, If we expand the immaterial cases for the above Table 6.1, it results
in Table 6.2 asbelow:

 R 1 RULE 2 R 3 RULE 4 R 5 R 6

CONDITION A YY YYYY YY NNNN NN NN
CONDITION B YY NNNN YY YYNN NY YN
CONDITION C YN NNYY YN YYYY NN NN

CONDITION D YY YNNY NN NYYN YY NN

o Table 6.2 : Expansion of Table6.1

o Sixteen cases are represented in Table 6.1, and no case appearstwice.
o Consequently, the flowgraph appears to be complete andconsistent.
o As a first check, before you look for all sixteen combinations, count the number

of Y's and N's in each row. They should be equal. We can find the bug that
way.

ANOTHER EXAMPLE - A TROUBLE SOME PROGRAM:

o Consider the following specification whose putative flowgraph is shown in

Figure 6.5:
1. If condition A is met, do process A1 no matter what other actions

are taken or what other conditions aremet.
2. If condition B is met, do process A2 no matter what other actions

are taken or what other conditions aremet.
3. If condition C is met, do process A3 no matter what other actions

are taken or what other conditions aremet.
4. If none ofthe conditions is met, then do processes A1, A2, andA3.
5. When more than one process is done, process A1 must be done

first, then A2, and then A3. The only permissible cases are: (A1),
(A2), (A3), (A1,A3), (A2,A3) and(A1,A2,A3).

o Figure 6.5 shows a sample program with abug.

Figure 6.5 : A Troublesome Program

7

o The programmer tried to force all three processes to be executed for

the cases but forgot that the B and C predicates would be done again,
thereby bypassing processes A2 andA3.

o Table 6.3 shows the conversion of this flowgraph into a decision table after
expansion.

Table 6.3 : Decision Table for Figure 6.5

PATH EXPRESSIONS:

 GENERAL:

o Logic-based testing is structural testing when it's applied to structure (e.g.,
control flowgraph of an implementation); it's functional testing when it's applied
to aspecification.

o In logic-based testing we focus on the truth values of control flowpredicates.
o A predicate is implemented as a process whose outcome is a truth-functional

value.
o For our purpose, logic-based testing is restricted to binarypredicates.
o We start by generating path expressions by path tracing as in Unit V, but this

time, our purpose is to convert the path expressions into boolean algebra,
using the predicates' truth values (e.g., A and) asweights.

BOOLEAN ALGEBRA:

o STEPS:
1. Label each decision with an uppercase letter that represents the

truth value of the predicate. The YES or TRUE branch is labeled
with a letter (say A) and the NO or FALSE branch with the same

letter overscored (say).
2. The truth value of a path is the product of the individual labels.

Concatenation or products mean "AND". For example, the straight-
through path of Figure 6.5, which goes via nodes 3, 6, 7, 8, 10, 11,
12, and 2, has a truth value of ABC. The path via nodes 3, 6, 7, 9

and 2 has a value of .
3. Iftwo or more paths merge at a node, the fact is expressed by use

of a plus sign (+) which means "OR".

8

Figure 6.5 : A Troublesome Program

o Using this convention, the truth-functional values for several of the nodes can

be expressed in terms of segments from previous nodes. Use the node name
to identify thepoint.

o There are only two numbers in boolean algebra: zero (0) and one (1). One

means "always true" and zero means "alwaysfalse".

o RULES OF BOOLEANALGEBRA:

 Boolean algebra has three operators: X (AND), +(OR)and (NOT)
 X :meaning AND. Also called multiplication. A statement such as

AB (A X B) means "A and B are both true". This symbol is usually
left out as in ordinaryalgebra.

+ :meaning OR. "A + B" means "either A is true or B is true or both".

 meaning NOT. Also negation or complementation. This is read as

either "not A" or "A bar". The entire expression under the bar is
negated.

 The following are the laws of booleanalgebra:

9

In all of the above, a letter can represent a single sentence or an entire boolean
algebraexpression.

Individual letters in a boolean algebra expression are called Literals (e.g. A,B)
The product of several literals is called a product term (e.g., ABC, DE).
An arbitrary boolean expression that has been multiplied out so that it consists of the

sum of products (e.g., ABC + DEF + GH) is said to be in sum-of-products form.

The result of simplifications (using the rules above) is again in the sum of product form
and each product term in such a simplified version is called a prime implicant. For example,
ABC + AB + DEF reduces by rule 20 to AB + DEF; that is, AB and DEF are prime implicants.

The path expressions of Figure 6.5 can now be simplified by applying the rules.
The following are the laws of boolean algebra:

Similarly,

10

The deviation from the specification is now clear. The functions should have been:

Loops complicate things because we may have to solve a boolean equation to determine

what predicate-value combinations lead to where.

KV CHARTS:

 INTRODUCTION:

o If you had to deal with expressions in four, five, or six variables, you could get
bogged down in the algebra and make as many errors in designing test cases
as there are bugs in the routine you'retesting.

o Karnaugh-Veitch chart reduces boolean algebraic manipulations to graphical
trivia.

o Beyond six variables these diagrams get cumbersome and may not be
effective.

 SINGLEVARIABLE:

o Figure 6.6 shows all the boolean functions of a single variable and their
equivalent representation as a KVchart.

11

Figure 6.6 : KV Charts for Functions of a Single
Variable.

o The charts show all possible truth values that the variable A canhave.
o A "1" means the variable’s value is "1" or TRUE. A "0" means that the

variable's value is 0 orFALSE.
o The entry in the box (0 or 1) specifies whether the function that the chart

represents is true or false for that value of thevariable.
o We usually do not explicitly put in 0 entries but specify only the conditions

under which the function istrue.

 TWOVARIABLES:

o Figure 6.7 shows eight of the sixteen possible functions of twovariables.

12

Figure 6.7 : KV Charts for Functions of Two
Variables.

o Each box corresponds to the combination of values of the variables for the row

and column of thatbox.
o A pair may be adjacent either horizontally or vertically but notdiagonally.
o Any variable that changes in either the horizontal or vertical direction does not

appear in the expression.
o In the fifth chart, the B variable changes from 0 to 1 going down the column,

and because the A variable's value for the column is 1, the chart is equivalent
to a simple A.

o Figure 6.8 shows the remaining eight functions of twovariables.

13

Figure 6.8 : More Functions of Two Variables.

o The first chart has two 1's in it, but because they are not adjacent, each must

be takenseparately.

o They are written using a plussign.
o It is clear now why there are sixteen functions of twovariables.
o Each box in the KV chart corresponds to a combination of the variables'

values.
o That combination might or might not be in the function (i.e., the box

corresponding to that combination might have a 1 or 0entry).
o Since n variables lead to 2

n
 combinations of 0 and 1 for the variables, and

each such combination (box) can be filled or not filled, leading to 2
2n

ways of
doing this.

14

o Consequently for one variable there are 2
21

 = 4 functions, 16 functions of 2
variables, 256 functions of 3 variables, 16,384 functions of 4 variables, and so
on.

o Given two charts over the same variables, arranged the same way, their
product is the term by term product, their sum is the term by term sum, and the
negation of a chart is gotten by reversing all the 0 and 1 entries in thechart.

OR

 THREE VARIABLES:

o KV charts for three variables are shownbelow.
o As before, each box represents an elementary term of three variables with a

bar appearing or not appearing according to whether the row-column heading
for that box is 0 or1.

o A three-variable chart can have groupings of 1, 2, 4, and 8boxes.

o A few examples will illustrate theprinciples:

15

16

Figure 6.8 : KV Charts for Functions of Three
Variables.

o You'll notice that there are several ways to circle the boxes into maximum- sized

coveringgroups.

17

STATES, STATE GRAPHS, AND TRANSITION TESTING

Introduction

 The finite state machine is as fundamental to software engineering as boolean
algebra to logic.

 State testing strategies are based on the use of finite state machine models for
software structure, software behavior, or specifications of softwarebehavior.

 Finite state machines can also be implemented as table-driven software, in which
case they are a powerful designoption.

State Graphs

 A state is defined as: “A combination of circumstances or attributes belonging for
the time being to a person orthing.”

 For example, a moving automobile whose engine is running can have the
following states with respect to its transmission.

 Reverse gear
 Neutralgear
 Firstgear
 Secondgear
 Thirdgear
 Fourth gear

State graph -
Example

 For example, a program that detects the character sequence “ZCZC” can be in
the followingstates.

 Neither ZCZC nor any part of it has beendetected.
 Z has beendetected.
 ZC has been detected.
 ZCZ has been detected.
 ZCZC has beendetected.

States are represented by Nodes. State are numbered or may identified by words or
whatever else isconvenient.

Inputs and Transitions

 Whatever is being modeled is subjected to inputs. As a result of those inputs, the
state changes, or is said to have made aTransition.

 Transitions are denoted by links that join thestates.

 The input that causes the transition are marked on the link; that is, the inputs are
link weights.

 There is one out link from every state for everyinput.

18

 If several inputs in a state cause a transition to the same subsequent state,
instead of drawing a bunch of parallel links we can abbreviate the notation by
listing the several inputs as in: “input1, input2,input3………”.

Finite State Machine

 A finite state machine is an abstract device that can be represented by a state
graph having a finite number of states and a finite number of transitions
betweenstates.

oOutputs

 An output can be associated with anylink.

 Out puts are denoted by letters or words and are separated from inputs by a
slash as follows:“input/output”.

 As always, output denotes anything of interest that’s observable and is not
restricted to explicit outputs bydevices.

 Outputs are also linkweights.

 If every input associated with a transition causes the same output, then denoted

itas:
o“input1, input2,input3… /output”

S
t
a
t
e

T
a
b
l
e
s

 Big state graphs are cluttered and hard tofollow.

 It’s more convenient to represent the state graph as a table (the state
table or state transition table) that specifies the states, the inputs, the
transitions and the outputs.

 The following conventions areused:

 Each row of the table corresponds to astate.

 Each column corresponds to an inputcondition.

 The box at the intersection of a row and a column specifies the next
state (the transition) and the output, ifany.

State Table-Example

19

Time Versus Sequence

 State graphs don’t represent time-they represent sequence.

 A transition might take microseconds orcenturies;

 A system could be in one state for milliseconds and another for years- the state
graph would be the same because it has no notion oftime.

 Although the finite state machines model can be elaborated to include notions of
time in addition to sequence, such as time PetriNets.

o Software implementation

 There is rarely a direct correspondence between programs and the behavior of a
process described as a stategraph.

 The state graph represents, the total behavior consisting of the transport, the
software, the executive, the status returns, interrupts, and soon.

 There is no simple correspondence between lines of code and states. The state
table forms thebasis.

Good State Graphs and Bad

 What constitutes a good or a bad state graph is to some extent biased by the
kinds of state graphs that are likely to be used in a software test designcontext.

 Here are some principles forjudging.
o The total number of states is equal to the product of the possibilities of

factors that make up thestate.
o For every state and input there is exactly one transition specified to

exactly one, possibly the same,state.
o For every transition there is one output action specified. The output could

be trivial, but at least one output does somethingsensible.
o For every state there is a sequence of inputs that will drive the system

back to the same state.

Important graphs

State Bugs-Number of States

 The number of states in a state graph is the number of states we choose to
recognize or model.

20

 The state is directly or indirectly recorded as a combination of values of variables
that appear in the database.

 For example, the state could be composed of the value of a counter whose
possible values ranged from 0 to 9, combined with the setting of two bit flags,
leading to a total of 2*2*10=40states.

 The number of states can be computed asfollows:

o Identify all the component factors of thestate.
o Identify all the allowable values for eachfactor.
o The number of states is the product of the number of allowable values of

all the factors.

 Before you do anything else, before you consider one test case, discuss the
number of states you think there are with the number of states the programmer
thinks thereare.

 There is no point in designing tests intended to check the system’s behavior in
various states if there’s no agreement on how many states thereare.

o Impossible States
 Some times some combinations of factors may appear to be impossible.

 The discrepancy between the programmer’s state count and the tester’s state
count isoften due to a difference of opinion concerning “impossiblestates”.

 A robust piece of software will not ignore impossible states but will recognize
them and invoke an illogical condition handler when they appear to
haveoccurred.

Equivalent States

 Two states are Equivalent if every sequence of inputs starting from one state
produces exactly the same sequence of outputs when started from the other
state. This notion can also be extended to set ofstates.

Merging of Equivalent States

21

Recognizing Equivalent States

 Equivalent states can be recognized by the followingprocedures:

 The rows corresponding to the two states are identical with respect to
input/output/next state but the name of the next state coulddiffer.

 There are two sets of rows which, except for the state names, have identical
state graphs with respect to transitions and outputs. The two sets can bemerged.

TransitionBugs-
unspecified and contradictory Transitions

 Every input-state combination must have a specified transition.

 If the transition is impossible, then there must be a mechanism that prevents the
input from occurring in thatstate.

 Exactly one transition must be specified for every combination of input andstate.

 A program can’t have contradictions orambiguities.

 Ambiguities are impossible because the program will do something for every
input. Even the state does not change, by definition this is a transition to the
same state.

Unreachable States

 An unreachable state is like unreachablecode.

 A state that no input sequence canreach.

 An unreachable state is not impossible, just as unreachable code is notimpossible

 There may be transitions from unreachable state to other states; there usually
because the state became unreachable as a result of incorrecttransition.

 There are two possibilities for unreachablestates:

o There is a bug; that is some transitions aremissing.

o The transitions are there, but you don’t know aboutit.

Dead States

 A dead state is a state that once entered cannot beleft.

 This is not necessarily a bug but it issuspicious.

Output Errors

 The states, transitions, and the inputs could be correct, there could be no dead or
unreachable states, but the output for the transition could beincorrect.

 Output actions must be verified independently of states and
transitions. State Testing
Impact of Bugs

 If a routine is specified as a state graph that has been verified as correct in all
details. Program code or table or a combination of both must still beimplemented.

 A bug can manifest itself as one of the followingsymptoms:

 Wrong number ofstates.

 Wrong transitions for a given state-inputcombination.

 Wrong output for a giventransition.

 Pairs of states or sets of states that are inadvertently madeequivalent.

 States or set of states that are split to create in equivalentduplicates.

22

 States or sets of states that have becomedead.

 States or sets of states that have becomeunreachable.

Principles of State Testing

 The strategy for state testing is analogous to that used for path testing

flowgraphs.

 Just as it’s impractical to go through every possible path in a flow graph, it’s
impractical to go through every path in a state graph.

 The notion of coverage is identical to that used for flowgraphs.

 Even though more state testing is done as a single case in a grand tour, it’s
impractical to do it that way for severalreasons.

 In the early phases of testing, you will never complete the grand tour because

ofbugs.

 Later, in maintenance, testing objectives are understood, and only a few of
the states and transitions have to be tested. A grand tour is waste oftime.

 Theirs is no much history in a long test sequence and so much has happened
that verification isdifficult.

Starting point of state testing

 Define a set of covering input sequences that get back to the initial state
when starting from the initialstate.

 For each step in each input sequence, define the expected next state, the
expected transition, and the expected outputcode.

 A set of tests, then, consists of three sets ofsequences:

o Inputsequences
o Corresponding transitions or next-statenames

o Outputsequences

Limitations and Extensions

 State transition coverage in a state graph model does not guarantee

completetesting.

 How defines a hierarchy of paths and methods for combining paths to
produce covers of state graphs.

 The simplest is called a “0 switch” which corresponds to testing each
transition individually.

 The next level consists of testing transitions sequences consisting of two
transitions called “1switches”.

 The maximum length switch is “n-1 switch” where there are n numbers

ofstates.

o Situations at which state testing isuseful

 Any processing where the output is based on the occurrence of one or more
sequences of events, such as detection of specified input sequences,
sequential format validation, parsing, and other situations in which the order
of inputs isimportant.

 Most protocols between systems, between humans and machines, between
components of a system.

 Device drivers such as for tapes and discs that have complicated retry and
recovery procedures if the action depends on thestate.

Whenever a feature is directly and explicitly implemented as one or more state transition tables.

